

# Welcome to the 2019

# Chemistry

Student

Research

**Presentations** 

# **The Navarro Lab**



#### **Research Overview**

I. Biologically active natural products





swerilactone A

I. New synthetic methods





## Total Synthesis of Swerilactone A

Allen Li

- Connor Saludares
- + Tim McClure
- + Jillian Kuo



- Cytotoxic activity against hepatitis B virus-infected cells
- No reported total syntheses
- Why organic chemistry?





#### **Methods Research**

Cheyenne Caroline Orozco Arnall

Developing new methods helps find new ways to access motifs, assists in synthesis efficiency, expands general knowledge on the reactivity of organic molecules





#### **Contact Info**

Professor Navarro: <a href="mailto:rnavarro@oxy.edu">rnavarro@oxy.edu</a>

Total Synthesis:

- Allen Li: ali2@oxy.edu

Methods:

- Caroline Arnall: carnall@oxy.edu

Website: www.navarro.oxycreates.org



#### SRP Conference, Summer '19

Instagram: @totalsynthbros

# Cannon Lab

# **The Cannon Lab**

PI: Dr. Jeff Scott Cannon

jcannon@oxy.edu

Presenters:

Sophia Yujin Yang

yyang2@oxy.edu

Kayla Rose Steinke

ksteinke@oxy.edu



#### Summer 2019

# What do we do?

<u>Method Development</u>: Devising new synthetic methods to obtain useful products or carry out key reactions with the intent of being able to apply these newfound techniques broadly

<u>Computational Analysis</u>: Using *in silico* models to predict or analyze chemical behavior and subsequently inform practices





Photoredox radical chemistry

`OEt

# Why Ochem?



**Motivations:** 

- Develop pathways to generate unique biologically relevant molecules
- Design functionally and geometrically complex compounds
- Use innovative methods and strategies
- Synthetic targets may see use in pharma/biotech, etc.

#### Perks:

- Applying techniques of 220 and 221 Labs
- Gaining experience with important instrumentation (NMR, IR, GC)
- Simulating graduate labs and project ownership
- Giving academic & professional presentations
- Attending local & national conferences
- Making friends!!!!!!





# Find Us !!

#### Insta: @thecannonlab

#### Website: cannonchem.com



#### 2019 UC Irvine SoCal Undergraduate Research Symposium

AUGUST 9, 2019 / THECANNONLAB / LEAVE A COMMENT

thecannonlab

•••



65 322 Posts Followers

2 149 vers Following

The Cannon Lab Organic Chemistry | Occidental College www.cannonchem.com Followed by rainsocal, eljefecannon and 18 others



# The Hill Lab



### Electromechanical Reshaping (EMR) of Cartilage



Figure 1: Electromechanical Reshaping of rabbit ear (in vivo) using DC power supply (battery), platinum needles, and acrylic jig.



#### At the molecular level...

# More Applications of EMR and Future Aims

- Electrochemical Cornea Reshaping
- Tendon lengthening (contractures)
- Cornea Clearing (base injury)



- Dosimetry and pH profile to prevent tissue death





# Organometallic Synthesis for Redox Flow-batteries



#### **Electrochemical Characterization of a P450**





#### Organic Oxidation with a Ni/Fe Hydroxide Catalyst





# Thermodynamics of the Electron Transfer Reaction between Cytochrome C and the CuA Domain on CytC Oxidase

- This is an e- transfer reaction at the end of the electron transport chain (ETC), the **mechanism behind aerobic respiration**
- **Current data is not consistent** with the kinetic rate of this reaction needed to **sustain living organisms**?!!!?!!???
- Investigate **conformational change when proteins dock** (thiol ligand bridge, see figure), this would make energy level (reduction potential) gap between the proteins consistent with a much faster rate!
- But **how** do you investigate this????







Fig. 2 SAMs on gold electrode surface

CuA

# **Some cool lab skills** I have learned in my research experience in the Hill Lab and with Prof. Muren:

#### <u>CuA</u>

-how to transform bacteria

-how to run DNA and protein gels

-how to run a column (size exclusion, ion exchange, FPLC, TLC, you name it!!)

-how to whip up any kind of buffer I might need (just give me the pH and concentration and you got it)

-how to use 90% of the centrifuges on campus (not always as easy as it may seem!)

-how to use the Nanodrop as well as the other, far less exciting, cuvette-using spectrometers

-how to use a potentiostat

-several techniques in cleaning electrodes, and attaching/orienting my thiol layer onto my electrodes

-how to run cyclic voltammetry studies

-how to analyze those CV studies into thermodynamic data!

#### <u>P450</u>

-how to synthesize new compounds!

-how to use a schlenk line

-how to reflux stuff

-how to run an NMR on my synthesized compounds for the P450 project

-how to use the rotovap

#### Inorganic synthesis

Electrochemistry!!!!!!!

Animal dissection and ex/in vivo experiments (UC Irvine collaboration)

Biochemistry/Molecular Biology















**Interdisciplinary - Chemistry of Bacterial Predator-Prey Interactions** 

Biochemistry, Biophysics, Physical Chemistry and Computational Chemistry

#### WHO - Infectious Disease a Critical Human Health Issue Surface Interactions of a Bacterial Predator (*Bdellovibrio bacteriovorus*) and its prey (*E. Coli*)







- Sought to understand chemical and physical properties of *Bdellovibrio* at surfaces with and without prey cells
- Understand how Bdellovibrio sense surfaces and how they identify their prey as edible

# Atomic Force Microscopy (AFM)

• We use atomic force microscope to image *E. coli* and *Bdellovibrio,* and measure their adhesive forces



Photodiode

Laser

 This instrument allows us to take quantitative force measurements of cell membrane

# **Contact Info**

Professor Spain <u>emspain@oxy.edu</u> NC 307

Russell Uyemura ruyemura@oxy.edu

Jiaqian Wu jwu2@oxy.edu



# DESPAGNET-AYOUB \_\_\_\_\_ GROUP \_\_\_\_\_







#### FLOW BATTERY – BRANDON

• Develop metal complexes with outer sphere Lewis acids to allow selective electrochemical shifts



# Iron ComplexPlatinum Complex $* \longrightarrow (-+) \longrightarrow (-$

• Both complexes are being tested as electroactive species for redox flow batteries to enhance energy storage/transfer

#### POLYMERIZATION – SERENA, MOLLY, MCKENNA



FG: Functional group (-CO<sub>2</sub>Me, -**OCOMe**,-CH<sub>2</sub>OH, ,-CH<sub>2</sub>NHR...)

- Early Transition Metal Catalyst: NHC Phosphine Zirconium Complexes
- Directing approach of functionalized olefin
  - $\circ$   $\,$  No interaction between polar  $\,$

functional group and metal center



#### CONTACT US!

FOLLOW US @EDACHEMLAB EMAIL US IF YOU HAVE ANY QUESTIONS! Emmanuelle: edespagnetay@oxy.edu

Damien: dbissessar@oxy.edu

Brandon ('21): bmarkson@oxy.edu

Serena ('21): scho2@oxy.edu

Molly ('21): mdavis2@oxy.edu

McKenna ('21): simsm@oxy.edu





posts 61 followers 58 following

G SAVED

IN TAGGED

Oxy Organometallic Lab complex [lig]and creative ! ©















Presenters:Morgan Crotta '21Lauren Chin '20Ichin@oxy.edu

# <u>Cytochrome P450</u>

Ayanna Lynch, Warren Zhang, Morgan Crotta, Crystal Liang, Wesley Hsiao, Zachary Schuman, Parag Kalay

- Hormone biosynthesis
- Human P450s metabolize > 90% of drugs

#### Goals:

-Develop a biocatalyst system -Use electrode as an inexpensive and industrial friendly alternative for NADPH





#### What do we do in lab?

- Synthesis of viable P450 mutants
- Understanding enzyme-electrode interactions
- Synthesis of cobalt compounds for electron transfer to P450

# <u>Heparin</u>

#### Lauren Chin, Andrew Park, Atnasia Dessalegn

- Expressed by most animal cells, varied function -Affects growth factors, Inflammation, Immune response -Coagulation
- Therapeutic heparin used to prevent postoperative thrombosis, **\$4B / yr**

#### **Problems with Heparin**

HeterogeneousToxic Antidote (Protamine)Overdose

#### <u>Goals</u>

Design alternative antidote



#### What do we do in lab?

- Grow cells to produce nanoparticles
- Purify and test proteins
- Isothermal titration calorimetry
- Biolayer interferometry



SCCUR

Andrew Park, Lauren Occidental College, Department Sa Rents

# Join the Udit Lab!

otem Surfactant System

Characterization of CAR T Cell Products from Different Starting Populations



GETTY MUI INTERNSHIP

# Ayanna Lynch

- Getty Marrow Undergraduate Internship
- 10 weeks (June 17<sup>th</sup>- August 23<sup>rd</sup>)
- Getty Research Institute with Mark Benson
- Getty Conservation Institute with Vincent Beltran



- •Training on the Microfading Tester
- •Protocol development
- •Blue Wool Standard testing

•Meetings with Academy Museum of Motion Pictures and American Museum of Natural History





<sup>•</sup>MFT testing of works for gallery exhibitions and pieces intended to go on loan

•Blue wool equivalencies

•Lighting recommendations

• Lighting level

• Display duration





#### BAUHAUS BEGINNINGS

•Color and light monitoring in the GRI galleries

•Specific gallery challenges due to architecture





#### LIGHT BOX STUDIES

- •Range of sample types with varying light sensitivity
- Reciprocity between simulated "gallery" fading and MFT predictions
- Supplementary visual survey of "Just Noticeable Difference"
  Weekly surveys taken to determine how much color difference is visible to the human eye



# OTHER PROJECTS

•Paint films

Data collection

Protocol Development

•Environmental Data analysis

•Excel tool testing and protocol editing

Environmental tool testing

Architectural Model Conservation

•Dry cleaning

Condition reports

Pest Treatment



#### MOVING FORWARD

•Graduation in May 2020

PhD in Chemistry

• Material Science????

• Physical Chemistry????

• \$\$\$\$\$\$\$\$\$

#### THANKS!

Getty Foundation

•Getty Conservation Institute, Science Department

•Getty Research Institute

Mark and Vincent

#### More cookies!!!



Lemon Bars!!!