

We envision a future where the people who imagine and build technology mirror the people and societies for whom they build it.

Not Just functions: a 360o Guide to
 Serverless and FaaS

Vasuki Ashok

Oracle Corporation
vasuki.ashok@oracle.com

L. Ümit Yalçinalp
Oracle Corporation

umit.yalcinalp@oracle.com

ABSTRACT
This paper presents a comprehensive guide to Serverless
and FaaS concepts in cloud computing and the industry
best practices. It contrasts FaaS with PaaS and lists down
a set of applicable use cases with concrete examples. The
challenges faced by cloud developers and vendors security
implications, the paper concludes with the pros and cons
and anticipated improvements.
AUDIENCE
This paper is intended to be a guide for a
beginner/intermediate technical audience willing to
understand what FaaS (Functions as a Service) is about,
where to use it, and the best practices and considerations
that have emerged in the industry as technology matures.

INTRODUCTION
FaaS and Serverless architecture has emerged (Han 2017)
as a key component of cloud offerings in the industry
within the last decade. Today, multiple cloud vendors
including (AWS), (Google), (OracleFn), and (Microsoft)
offer such capabilities enabling developers to utilize their
cloud platforms.

The underlying concept of serverless architecture is the
notion that a service developer doesn’t manage any server
or processes on the cloud. The Life Cycle Management
(LCM) of the application’s resource requirements such as,

• Provisioning of servers
• Auto scaling of nodes (adopting the number of

servers based on load)

are completely the responsibility of the cloud vendor.

Since the developer does not manage the resources,
he/she focuses solely on the business logic as if all
resources in the data center are available on demand. The
cloud vendor ensures that the required resources are made
available to the service. In this model, while the Business

Functions are considered to be provided by the application
developer, and the service itself is made available to
consumers by the cloud vendors, on an on-demand basis.

On the surface, this may look very similar to the goal of
PaaS (Platform as a Service) architecture, which manages
similar responsibilities. PaaS services provide end to end
business functionality with built-in security access control
and authorization models. A PaaS service typically focuses
on container based deployment with multiple entry points
that collaborate with other services to provide end to end
functionality. A typical PaaS services may experience
significantly higher start up time, as the functionality
supported is coarse granular requiring multiple
interactions. In addition, a PaaS service serves multiple
requests and addresses different concerns (such as an
account management service). In contrast, FaaS services
address fine granular computational requirements (such
as computing an international shipping cost of goods) or
triggering of some long running background jobs. As
functions can be reused in multiple apps, it is possible to
stitch several FaaS functions to build a PaaS service. In a
composite, each such function incurs a start time (less than
20 ms) and introduces a network latency thus might result
in a longer execution time, if not designed correctly. Such
composite services may be hard to diagnose and debug.

ARCHITECTURE & USE CASES
FaaS architecture is based on the fact that every business
functionality can be divided into multiple micro workflows
(functions) which can further be divided into a sequence
of event triggered actions. The result of an action may be
another event that can trigger a domino of actions leading
to the completion of the business functionality.

Let’s take an example of a business function, where a
customer can request an analytics report from a mobile
App. This requires two different functions (ReqProcFn and
RepGenFn), to work in sequence as shown below:

We envision a future where the people who imagine and build technology mirror the people and societies for whom they build it.

1. The customer selects the parameters that determine
the required report and clicks the GenerateReport
button.

2. The button click event generates an HTTP request to

the ReqProc fn.
3. If the FaaS function server is already running,

ReqProcFn reads the request, gets the required
contextual information from its context repository,
processes the request and generates the output and
adds it to the queue.

4. The addition of an entry in the queue generates the
next event which initiates a request to the RepGenFn.

5. RepGenFn interprets the request and reads required
data from its repository and generates the report.

6. The generated report is sent to the target as
requested in step 1. Depending on the target, zero or
more functions may be invoked.

Some of the other use cases of serverless functions are:
• Static Web Page serving, eliminating the need for VM

hosting for websites (such as loading of web pages
only when required- ex: catalogs; providing JIT
webservices)

• Mobile Backend Apps (User action triggers backend
processing; Backend simplification without hosting)

• IoT Data Processing (making IoT processing only on
event boundaries; Scaling IoT sensor data recording;
Consolidating IoT management in the cloud)

• Streaming Data Analysis (Real time analytics based
on events; On Demand Reporting; Flexibility with
Analytics a Service)

• Cognitive Processing (Image processing; Identity
Validation with Automation; Decentralization.

DEVELOPER PERSPECTIVE
A developer implementing the business logic addressing
any of the use cases similar to the ones above is not
constrained by the resource requirements. However, they
are limited by other constraints unique to Serverless
(AWSDev) development. These constraints include:
1. Statelessness: Serverless components are stateless.

Since these functions are hosted as required, they do
not have any persistent file system. Hence, any state
context required must be persisted in a resource such

as a database, network store or network cache which
is outside the function.

2. ColdStart Delay: The services might show significant
delay to serve the first request. Depending on the
vendor it constrains the developer’s choice of
language and the state repository to optimize the
startup time.

3. Runtime Limit: The execution time is bound by an
upper limit enforced by the cloud vendor. Different
vendors have different upper limits constraining the
duration for which the function can run. This might
limit the target functionality to be deployable to a
specific cloud vendor. For instance, AWS allows
lambda functions to run for a max of 15 minutes,
whereas Azure limits it to 10 minutes.

4. Network Bandwidth: A fine granular function may be
subject to frequent network calls. If the vendor billing
is based on the network bandwidth consumption,
hosting a fine granular function with FaaS might end
up costing more than having a dedicated server.

CLOUD PROVIDER CHALLENGES
A cloud vendor providing FaaS needs to effectively share
its resources among multiple customers who may not have
mutually exclusive resource requirements. In addition to
scheduling the resources, deploying the functions on
demand in environments with proper network isolation, a
cloud vendor also needs to support the following:
• Function Development Tooling (Tools for developers

to develop and deploy their solutions - IDE).
• Multiple Programming Language support

(Java/Python/PHP/Go are some of the typical
runtimes needed for developed services)

• Environment Support (K8S, Docker, Windows, VMs,
Linux and others)

• Run time support for automatic scale-in/scale-out,
handling of rogue services

• Tooling for monitoring and managing of the resources
• Optimized of cold start costs (analytics on usage

behavior, ML techniques for predictability)
• Authentication and isolation of resources
• Providing shared vs dedicated resources, based on

usage patterns
• Financial viability (Billing, usage metering, etc.)

GENERAL CHALLENGES
In addition to solving individual challenges, both
developers and cloud vendors need to work together to
address the following issues

We envision a future where the people who imagine and build technology mirror the people and societies for whom they build it.

Cold Start/Request Processing Cycle
One of the constraints in meeting zero-time scalability is
called cold start. It is defined as the time taken by the
service provider to bring the function code to a running
state to serve the requests. A cold start happens when the
first request arrives for a Serverless function after it went
idle or when new nodes are started up due to the
increasing load. The Cold Start phenomenon is depicted
below:

As seen in the diagram, first the VM to run the code is
identified and bootstrapped as part of which it is attached
to a file system. Depending on the requirement, additional
libraries and extensions might have to be added to this
node with the required language specific runtime. In case
of container-based services, these extensions may not be
required. Once the environment is ready, the function
binary is loaded from a registry to the environment. In case
of container-based functions, the container is loaded from
the registry and the service/container is started. At this
point the service is ready to serve the requests.

The frequency of invocation is an indicator of the cold
startup cost (Roberts 2018). While a very frequently used
function may not experience any cold start delay, a rarely
used function will always experience longer startup time as
it needs to be loaded from the registry.

Cloud vendors can address these issues by providing
options to customers either to keep the functions warm
always or based on well-known schedule usage patterns
determined by machine learning algorithms.

Security Implications
As serverless functions become more popular, it also
increases the risk as developers may not be aware of the
dangers and do not incorporate security considerations
into their design (Osborne 2018). Most important aspect is
not paying attention to end to end security requirements
for runtime execution of functions, such as
• Running functions with overprivileged roles to cater to

multiple use cases, or
• Forgetting to secure the artifacts themselves in

deployed files such as secrets, db passwords, or
• Not considering the overall context of end to end

functionality with many functions stitched together

• Using insecure 3rd party dependencies which might
expose the whole system to DoS attacks.

Thus, the overall system composition becomes crucial for
secure execution of FaaS functions. A cloud vendor
cognizant of these issues can address these requirements
i.e. need for secret store, policy store and secure library
registry etc. as part of the infrastructure. This area will
continue to be the focus of cloud vendors and Application
architects developing FaaS based services.

OUTCOMES/CONCLUSION
FaaS has very desirable properties for backend and event-
based processing for developers as it enables composition
& reuse without LCM costs. However, any system is as good
as its weakest link, and FaaS is no exception: it deceptively
hides the inherent issues of a cloud environment that must
be optimized for resource allocation, sharing, and
scalability. Successful deployment with FaaS requires
developers to not only focus on their app logic but also the
startup time, the event distribution rate (to minimize the
burden of cold starts) and security implications in a
complex system, when many functions are chained
together. These are well beyond the lure of just focusing
on application logic.

The future for FaaS is heading to publication of functions
that enable composition in vertical segments as well as
helping developers with different cloud environments, by
building more abstractions. This helps in the deployment/
runtime support for complex compositions, especially in
mitigating the security risks. More work needs to be done
for end to end tracing and debugging. Optimizing startup
times based on usage patterns, pre-defined schedules
and/or subscription plans are viable options for cloud
vendors. One toolkit is opensource (OracleFn), that we
work on at Oracle with the community.

REFERENCES
(Han2017)https://medium.com/@BoweiHan/an-introduction-
to-serverless-and-faas-functions-as-a-service-fb5cec0417b2
(OracleFn,2017)https://developer.oracle.com/opensource/server
less-with-fn-project see also https://github.com/fnproject/flow
(Roberts2018)
https://www.martinfowler.com/articles/serverless.html
(AWS) https://aws.amazon.com/lambda/resources/
(Osborne2018) https://www.zdnet.com/article/the-top-10-risks-
for-apps-on-serverless-architectures/
(Google)https://Cloud.google.com/serverless
(Microsoft)https://azure.microsoft.com/en-
us/services/functions/
(AWSDev)https://docs.aws.amazon.com/lambda/latest/d
g/lambda-dg.pdf

We envision a future where the people who imagine and build technology mirror the people and societies for whom they build it.

PARTICIPATION STATEMENT
Both authors will participate if the submission is accepted.

BIO
Vasuki Ashok is an architect at Oracle in the Cloud Security
and Identity organization providing security solutions for
Oracle Cloud Services. She has been awarded 4 patents
for her work in Oracle Cloud Security and Identity. She has
experience in working on different aspects of Identity
Management. She started her computing career with the
E&RNET project, which established the first educational
network that interconnected all the major educational and
research institutions in India. She has over 20 years of
experience in the computing industry after her Ph.D in
Computer Science in the from Indian Institute of
Technology, Madras.

Ümit Yalcinalp is an architect at Oracle who focuses on
identity management for SaaS applications, in particular
LCM and modernization of enterprise and SaaS
deployments. Prior to Oracle, she was an architect for
Creative Cloud at Adobe focusing on identity
management, a visiting professor at Mills College, a
researcher at SAP Labs and author and contributor to
many standards papers, books, patents in Cloud
computing, Java, XML and Web Services. She frequently
presents at GHC and founder of Turkish women in
computing community at ABI. She has over 25 years of
experience in the industry after her Ph.D. in Computer
Science from Case Western University.

