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We present examples based on actual and synthetic datasets to illustrate how 

simulation methods can mask identification problems in the estimation of discrete 

choice models such as mixed logit. Simulation methods approximate an integral 

(without a closed form) by taking draws from the underlying distribution of the 

random variable of integration. Our examples reveal how a low number of draws 

can generate estimates that appear identified, but in fact, are either not 

theoretically identified by the model or not empirically identified by the data. For 
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the underlying source of the problem by focusing on the shape of the simulated 

log-likelihood function under different conditions. 
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1   Introduction 

Over the past decade, simulation methods have grown in popularity as 

advancements in computational speed have allowed researchers to estimate increasingly 

richer models of consumer and firm behavior. In particular, the literature on consumer 

choice theory has spread rapidly with the development of numerical techniques such as 

maximum simulated likelihood and the method of simulated moments (for example, 

Berry, Levinsohn, and Pakes, 1995, Brownstone and Train, 1999, and Goolsbee and 

Petrin, 2003). While simulation allows estimation of more flexible models, we examine 

how simulation noise can mask identification problems inherent in the model or data. We 

explore the issue within the context of mixed logit and maximum simulated likelihood 

estimation through the use of both synthetic and real data. Furthermore, we investigate 

the underlying source of the problem by examining the shape of the simulated log-

likelihood function under different conditions. While we examine the particular case of 

maximum simulated likelihood estimation, the caveats presented in this paper could 

apply to other estimation strategies that employ simulation methods.  

Simulation methods rely on approximating an integral (that does not have a closed 

form) through Monte Carlo integration. Draws are taken from the underlying distribution 

of the random variable of integration and used to calculate the numeric integral. Poor 

approximations of numerical techniques have important implications for the 

interpretation of the estimates and any resulting conclusions or welfare calculations. We 

show how the practice of applying maximum simulated likelihood estimation can 

generate misleading results even under 1000 pseudo-random, Halton, or shuffled Halton 

draws. Most empirical work on mixed logit models typically apply 200 to 300 draws.  
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We present examples of mixed logit models where employing a “low” number of 

draws to construct the simulated integral can generate estimates that are not identified by 

the model or the data. In each of the examples, we estimate the model under different 

types of simulation draws: random, Halton, and shuffled Halton. We consider two types 

of identification problems: theoretical and empirical unidentification. Theoretical 

unidentification occurs when the model cannot be estimated in principle (regardless of 

the data at hand). Empirical unidentification occurs when the data cannot support the 

model even though the model may be estimable in principle. 

The first example utilizes a dataset on consumers’ choices of telephone plans. It 

demonstrates how a model that is not theoretically identified can appear to result in 

identified estimates at a low number of draws. A classic symptom of unidentification, a 

singular Hessian, does not emerge until a much higher number of draws is employed. In 

the second set of examples, we generate synthetic datasets to investigate the source of 

empirical unidentification by examining the shape of the simulated log-likelihood 

functions under varying numbers of draws and identification conditions. The last two 

examples use an actual dataset on consumer choices across retail stores and a synthetic 

dataset to consider empirical unidentification under more complex specifications. 

Limited research exists on the empirical identification of discrete choice models 

under simulation methods. Ben-Akiva and Bolduc (1996) and Walker (2001) note that an 

identification problem can arise when a low number of draws are used, and they and 

others (e.g., Hensher and Greene, 2003) emphasize the necessity of verifying the stability 

of parameter estimates as the number of draws are increased. Walker (2001) and Walker, 

et al. (2006) examine the theoretical framework for the identification of mixed logit 
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models and support their findings with empirical examples. In contrast, this paper focuses 

primarily on the issue of empirical unidentification by explicitly examining the properties 

and transformation of the log-likelihood function over a range of number of draws. 

 The next section presents the theoretical framework of the mixed logit model and 

describes the estimation procedure. The remaining sections discuss the empirical 

examples and illustrate the sensitivity of the estimates with respect to simulation. 

 

2     The Mixed Logit Model 

2.1   Consumer Preferences 

In this discrete choice model, the utility that consumer n, n = 1, ..., N where N is 

the sample size, receives from choosing alternative i, i = 1, ..., Jn is given by: 

ni ni n niU X β ε= +                                                     (1) 

where Xni is a (1xK) vector of observable characteristics for alternative i and consumer n 

and βn is a (Kx1) vector of consumer n’s tastes over the attributes of alternative i. The 

random coefficient βn contains a subscript n to indicate that preferences over the 

characteristics of an alternative may vary among individuals in the population. The term 

εni captures consumer n’s idiosyncratic and unobservable taste for alternative i. Under a 

logit model, εn (consisting of εni, i=1,...,Jn) is an i.i.d. Extreme Value random vector. The 

random coefficient βn can assume any distributional form (see Train, 2003, for further 

information). McFadden and Train (2000) demonstrate that any random utility model can 

be “approximated to any degree of accuracy by a mixed logit model with the appropriate 

choice of variables” and distribution of the random coefficient.  



 5

 A consumer chooses the alternative that gives her the highest utility. More 

specifically, the set of values Ani of the idiosyncratic error εni that induces consumer n to 

choose alternative i is given by: 

     
n

ni ni ni ni n ni nj nj n njj 1,...,J
A { :U ( X , , ) max U ( X , , )}ε β ε β ε

=
= ≥                         (2) 

where j indexes all possible alternatives in consumer n’s choice set.  Conditional on the 

utility parameters βn, the probability that consumer n chooses alternative i is given by the 

standard logit formula: 

∫=
niAnni dfL εεβ )()(                                                          (3) 

n

ni n
ni n J

nj n
j 1

exp( X )L ( )
exp( X )

ββ
β

=

=

∑
                                                 (4) 

where f(.) is the density of the Extreme Value distribution. By convention, the parameters 

of the distribution of εni are normalized to set the level and scale of the utility function 

(Train, 2003). The location parameter of each Extreme Value error εni is zero, and the 

scale is set to 1 so that Var(εni) = π2/6. 

 Since βn is not observed, the unconditional probability of consumer n choosing 

alternative i is obtained by integrating out βn over its population distribution: 

βθββθ dgLP nini )|()()( ∫=                                              (5) 

where g(.) is the density of the distribution of βn over the population and θ is the vector of 

parameters of the distribution. For instance, if the joint distribution of the (Kx1) vector βn 

is multi-variate normal, then θ would represent the mean and parameters of the 

covariance matrix of the joint distribution. The vector θ is an unknown to be estimated.  
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2.2   Maximum Simulated Likelihood Estimation 

To estimate the mixed logit model under maximum simulated likelihood, we 

construct the log-likelihood by calculating each individual’s probability Pni of making her 

observed choice. When the integral in the expression for Pni does not have a closed form, 

the probability is often evaluated numerically by taking R draws β(r) (with r=1,2,...,R) 

from the population density g(β) and calculating Lni(β(r)) for each draw. The average of 

Lni(β(r)) over R draws gives the simulated probability:  

∑
=

=
R

r

r
nini L

R
P

1

)( )(1)(ˆ βθ .                                                     (6) 

This simulated probability is an unbiased estimator whose variance decreases as the 

number of draws R increases; it is smooth (twice-differentiable) and sums to one over all 

alternatives (Train, 2003). Since it is strictly positive, its logarithm is defined.  

 The simulated log-likelihood SL(θ) of the sample is the sum of the logarithm of 

the simulated probabilities for each consumer making her observed choice: 

nJN

nj nj
n 1 j 1

ˆSL( ) d log P ( )θ θ
= =

= ∑∑ ,                                            (7) 

where njd  equals 1 if consumer n chose alternative j and 0 otherwise. 

It is a well-known fact that although the simulated log-likelihood function is 

consistent when the number of draws increases with the sample size, it is simulated with 

a downward bias under a finite number of draws (Börsch-Supan and Hajivassiliou, 1993). 

Our paper focuses on a different phenomenon: namely, how the shape of the simulated 

log-likelihood is affected by the number of draws.  
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2.3   Methods of Generating Draws for Simulation 

We focus on three common procedures for generating draws from a density. The 

most straightforward approach obtains draws through a pseudo-random number generator 

available in most statistical software. 

An alternative approach creates draws based on a deterministic Halton sequence 

(Halton, 1960). Train (1999, 2003) provide an explanation and an example of the 

construction of a Halton sequence. In general, a Halton sequence can be created from any 

prime number p. The unit interval [0,1] is divided into p equally-sized segments, and the 

endpoints or “breaks” of these segments form the first p numbers in the Halton sequence. 

Successive numbers in sequence are generated by further subdividing each segment into 

p equally-sized segments and adding the breaks in a particular order.  

The resulting Halton draws achieve greater precision and coverage for a given 

number of draws than random draws, since successive Halton draws are negatively 

correlated and therefore tend to be “self-correcting” (Train, 2003). In fact, Bhat (2001) 

demonstrates that for a mixed logit model, 100 Halton draws provided results that were 

more accurate than 1000 random draws.  

Since each Halton sequence is constructed from a prime number, each dimension 

of simulation corresponds to a different sequence or prime. For instance, if βn is a 2x1 

vector where the two components are independently distributed, then the first component 

of the vector is generated from a Halton sequence based on the prime 2, and the second 

component is generated from a Halton sequence based on the prime 3. Higher dimensions 

of simulation require using higher primes. Unfortunately, under higher primes, Halton 
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draws can become highly correlated, leading to “poor multi-dimensional coverage” 

(Walker, 2001, Hess and Polak, 2003b). 

 To ameliorate the poor coverage of Halton draws for higher dimensions, 

researchers have adopted modified procedures such as shuffled and scrambled Halton 

draws. Hess and Polak (2003a, 2003b) describe the construction of the shuffled sequence, 

which creates multi-dimensional sequences from randomly shuffled versions of the one-

dimensional standard Halton sequence. They find that the shuffled Halton sequence 

typically outperforms the standard Halton and scrambled Halton sequences. 

 

3   A Simple Example of Theoretical Unidentification: 

     Telephone Services 

 As a way of introducing the problem of interest, we present an example of a 

model that is not theoretically identified, and we show estimation results in which an 

identification problem is masked at low numbers of simulation draws. 

This example uses a dataset of households' choices over telephone services. The 

choice set comprises five alternatives, which are categorized into two groups: flat and 

measured. The three flat alternatives consist of a fixed monthly charge for unlimited calls 

within a specified geographic area, and the two measured alternatives include a reduced 

fixed monthly charge for a limited number of calls as well as usage charges for additional 

calls. A consumer’s tastes over the five alternatives are assumed to be correlated within 

groups (or nests). Consumer n’s utility from choosing telephone service i is given by:  

ni ni i n niU X NEST *α β ε= + + .                                          (8) 
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Xni is a (1x5) vector consisting of four alternative-specific constants and the log of the 

cost of the service, and α is the (5x1) vector of associated taste parameters. The variable 

NESTi is a (1x2) vector of dummies for each nest. The parameter βn is a (2x1) vector 

consisting of β1n distributed N(0, σ1
2) and β2n distributed N(0, σ2

2) where β1n and β2n are 

independent. More detail on the dataset and model can be found in Train, McFadden, and 

Ben-Akiva (1987) and Walker (2001). 

Walker (2001) discusses conditions for identification of the model and shows that 

only the value (σ1
2 + σ2

2) is identified. That is, when exactly two nests exist, only one 

nesting parameter is identified and to estimate the model an identifying constraint must 

be imposed, e.g., σ1 = σ2, σ1 = 0, or σ2 = 0. 

Table 1 shows the estimation results1 for a specification that does not include the 

necessary identifying constraint. Even without a necessary identifying restriction, the 

estimation procedure generates estimates that appear identified under a low number of 

draws (1000 Halton, 5000 pseudo-random). A large number of simulation draws (in this 

case, 2000 Halton draws) are necessary before resulting in a singular Hessian.  

Not realizing the identification condition can lead to incorrect conclusions drawn 

from hypothesis tests based on standard errors. Since the parameter estimates and 

standard errors are poorly approximated under a low number of draws, they are a 

function of the specific draws and the starting values that are used. For example, the 2000 

pseudo-random draw results for the telephone dataset would lead the modeler to 

incorrectly conclude that there is no correlation within the first nest (measured), but there 

                                                 
1 All estimation results in this paper were estimated using either (1) BIOGEME using the DONLP2 
optimization routine (see Bierlaire, Bolduc and  Godbout, 2004, and http://roso.epfl.ch/biogeme) or (2) a 
MATLAB implementation of Kenneth Train's GAUSS code using a BHHH-algorithm (Berndt, et al., 1974) 
to compute the Hessian (for further information, see Chiou, 2005). Both estimation programs were shown 
to produce similar results. 
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is correlation within the second nest (flat). However, the estimation results under 5000 

pseudo-random draws lead to the opposite conclusion (correlation among the measured 

alternatives but not among the flat alternatives).  

 

4   Empirical Unidentification and the Log-Likelihood 

     Function 

 In this section, we use extremely simple, synthetic datasets to examine the source 

of the empirical unidentification by investigating the properties of the simulated log-

likelihood function as the number of draws increase. We show that regardless of whether 

the model is empirically identified, the simulated log-likelihood for mixed logit is always 

globally concave under only one draw because the model is analogous to a standard logit. 

When a model is not empirically identified, the simulated log-likelihood function begins 

to flatten and exhibit a singular Hessian only as the number of draws increases. The 

obfuscation of the identification problem occurs in the intermediate cases where the log-

likelihood still exhibits the concavity as when only one draw is used. For the discussion, 

we consider two examples of the most common ways in which mixed logit is applied: 

first error components with a nesting formulation and then random coefficients on 

continuous explanatory variables.  

 

4.1   Random Coefficient on a Nest Dummy 

We consider a simplified case where only one parameter is estimated. The 

discrete choice model consists of five alternatives that are divided into two nests, and the 
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first three alternatives comprise Nest 1. Consumer n’s utility of choosing alternative i is 

given by: 

ninini NESTU εβ += 1                                                         (9) 

where NEST1 is a dummy for whether alternative i lies in Nest 1. We specify the random 

coefficient nβ  with a normal distribution, N(0, σ2); thus only one parameter σ must be 

estimated. Strictly speaking, the resulting standard deviation is calculated as 2σ , and 

therefore the sign of the estimated coefficient σ is irrelevant. As the number of draws 

approaches infinity, the simulated log-likelihood will be symmetric about zero.  

We generate the synthetic data according to the true value σ = 2.0 by creating 

observations for N consumers. For each consumer, we calculate the utility of each 

alternative by taking a single draw of nβ  from the N(0, σ2) distribution and εni from the 

Extreme Value distribution; the consumer chooses the alternative with the highest utility. 

 Table 2 reports the estimates of the standard deviation σ when the dataset contains 

only N = 50 observations. Under lower number of draws, the estimation procedure 

converges to a non-singular Hessian, but under a higher number of draws, the empirical 

unidentification becomes apparent. Figures 1 and 2 graph the simulated log-likelihood as 

a function of the parameter σ for a varying number of random and Halton draws.  

As shown in Figures 1 and 2, the simulated log-likelihood is always concave 

when only one draw is used. In general, including only one draw in the simulation is 

equivalent to estimating a standard logit model with an additional variable included in the 

utility equation. Consider a model with a single explanatory variable Xni and a random 

coefficient βn. We express consumer n’s utility from alternative i as Uni = Xniβn + εni. If 
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the number of draws R is equal to one, then the simulated probability of consumer n 

choosing alternative i is:  

         
n

ni n
ni J

nj n
j 1

exp( X )P̂
exp( X )

β

β
=

=

∑
                                                   (10) 

In the estimation procedure, the random coefficient for a single draw is decomposed as 

nn υσββ +=  where nυ , n=1,...,N, are independent draws from a standard normal 

distribution. The coefficients to be estimated are β  and σ , which are the population 

mean and standard deviation for the random taste. Substituting this expression into (10), 

we obtain: 

       
n n n

ni n ni ni n ni ni
ni J J J

nj n nj nj n nj nj
j 1 j 1 j 1

exp( X ( )) exp( X X ) exp( X W )P̂
exp( X ( )) exp( X X ) exp( X W )

β συ β υ σ β σ

β συ β υ σ β σ
= = =

+ + +
= = =

+ + +∑ ∑ ∑
.         (11) 

where ni ni nW X υ=  is defined as a “new” variable created from Xni and the particular draw 

for the consumer n. This is the standard logit formula where fixed parameters β  and 

σ are estimated over the variables Xni and Wni. Since the standard logit model is globally 

concave (Train, 2003), estimation will always return a non-singular Hessian.  

In our example, a draw υn is taken from a N(0,1) distribution, and βn is calculated 

as βn = συn. The “new” variable is υn*NEST1i. In other words, we can reinterpret the 

utility function as: 

ni i n niU ( NEST1 * )σ υ ε= +                                               (12) 

where σ is a fixed coefficient on the variable υn*NEST1i. Not surprisingly, the local 

maximum when 1 draw is used occurs near the origin, since the purely random draw has 

no explanatory power.  
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 On the other hand, the singularity of the Hessian is evident under 1000 random 

draws. In Figure 1, the simulated log-likelihood function rises away from 0, reflecting 

that the true value of σ is not zero, but the log-likelihood function flattens at higher 

magnitudes of σ. The data cannot empirically distinguish among the higher magnitudes of 

σ. In the intermediate case of 10 random draws, the simulated log-likelihood still exhibits 

a single peak as in the case of 1 draw. The local concavity gives rise to a convergence of 

the maximization routine.  

Due to the efficiency of Halton draws relative to random draws, the Halton draws 

achieve the same unidentification properties at a lower threshold. In Table 2, the 

singularity of the Hessian occurs at 35 Halton draws whereas 35 random draws still 

generate a local maximum. Moreover, the large standard error of 101.142 under 10 

Halton draws suggest the presence of an identification problem.  

Table 3 reports the estimates of the standard deviation σ when the dataset contains 

N = 10000 observations. In contrast to the previous case of only 50 observations, the 

dataset of 10000 observations is sufficient to empirically identify the model. The 

parameter estimates stabilize and approach the true value of σ = 2.0 as the number of 

draws increases.  Figures 3 and 4 graph the simulated log-likelihood as a function of the 

parameter σ for a varying number of random and Halton draws, indicating a unique 

maximum (disregarding the sign) even for large number of draws. 

 

4.2   Random Coefficients on Continuous Variables 

The dataset generated for this example uses three alternatives ( i 1,2,3= ) and two 

explanatory variables (X1 and X2). Unlike the previous example with a nest dummy, the 
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two explanatory variables here are drawn from a continuous distribution. The utility 

function is as follows: 

ni ni 1n ni 2n niU X 1 X 2β β ε= + + .                                         (13) 

The parameters 1nβ  and 2nβ  are independently and identically distributed N(0,σk), 

resulting in two parameters to estimate: σ1 and σ2. As with the previous case, two 

different synthetic datasets were generated that produced an empirically unidentified and 

identified model. The true values used for the parameters were σ1 =1 and σ2 =1. For the 

unidentified model, 100 observations were generated, and X1 and X2 were drawn from a 

bivariate normal distribution (variance of each equal to 1.0, covariance equal to 0.5, and 

non-zero means). The identified model used an identical specification except that 10000 

observations were generated, and the covariance of X1 and X2 was set to 0.2 

For this example, only pseudo-random draws were used. Table 4 provides the 

results for the unidentified model. Figure 5 plots the maximum of the simulated log-

likelihood over σ2 with respect to a given value of σ1 for 1 draw, 5 draws, and 500 draws. 

First note that the model is, indeed, unidentified as indicated by the exploding parameter 

estimates and flat log-likelihood function when 500 draws are used in estimation. 

However, note that for a low number of draws (5, in this case), the simulated log-

likelihood exhibits two local maxima on each side of zero, and therefore estimation of the 

model with 5 draws results in a seemingly identified model. 

Table 5 and Figure 6 report an analogous set of results for an identified model 

estimated with 10000 observations. The model is identified as indicated by stable 

                                                 
2 Cov(X1,X2) was set to 0.0 in order to be able to visually see curvature in the log-likelihood plots in Figure 
2. However, 10,000 observations using the same specification as the "unidentified example" (i.e., with 
Cov(X1,X2)=0.5) is, indeed, identified. 
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parameter estimates for 1000 and 2000 draws; these estimates are also close to the true 

values used to generate the synthetic data.  

 

4.3   Discussion of Simulated Log-likelihood Analysis 

The simulated log-likelihood functions for mixed logit models are not as well-

behaved as a standard logit model; mixed logit likelihood functions are not globally 

concave and are sensitive to poor approximations of the simulated probabilities for low 

number of draws. The results from these simple examples show that for a small number 

of draws, an empirically unidentified model can appear identified. It is only after a 

sufficient number of draws is used that the shape of the log-likelihood reveals the 

singularity of the Hessian.  

 

5   Examples of Empirical Unidentification 

The simple examples from the previous section were used to explore the source of 

empirical unidentification and to demonstrate the behavior of the log-likelihood function 

under different numbers of draws and under different conditions of identification. This 

section considers estimation results for more realistic datasets, including one real dataset 

regarding households' purchases of DVDs and one synthetic dataset.    

 

5.1 Retail Stores 

 In the first example, we apply data from Chiou (2005) to examine a household’s 

choice of retail store to purchase a DVD. We estimate a consumer’s choice of store 
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conditional on the purchase of a DVD. The consumer’s choice set consists of retail stores 

from the top 15 chains that sell DVDs, and each retail store is classified under one of five 

store types: mass merchant, video specialty, electronics, music, and online. Consumer n’s 

utility from traveling to store i to purchase her chosen video is given by: 

5

ni ni ik nk ni
k 1

U X TYPE *α β ε
=

= + +∑                                   (14) 

where Xni contains interactions of observable store and consumer characteristics (such as 

price, distance to store, income, education), and TYPEi is a vector of store type dummies. 

The explanatory variables in vector Xni do not have random coefficients ( αα ≡n  for all 

n); the vector Xni contains variables for which tastes are constant across the population. In 

contrast, consumers’ marginal utilities over store types vary by unobservable consumer 

characteristics. More specifically, the coefficients (βn) on the store type dummies are 

assumed to be independently and normally distributed. The random coefficients can be 

expressed as: 

nkkknk υσββ +=      with k = 1, 2, ..., 5                                        (15) 

where k indexes the store’s type, and nkυ  are independent standard normal variables. The 

coefficients kβ and kσ are the population mean and standard deviation for the marginal 

utility of store type k. Note that the standard deviations are allowed to differ by store 

type. The unknown parameters to be estimated are , ,α β  and kσ  (for k = 1,2,..,5). For 

further details on the data, specification, and estimation procedure, refer to Chiou 

(2005).3  

                                                 
3 Chiou (2005) estimates a mixed nested logit which is analogous to constraining the standard deviations of 
the marginal utilities across all store types to be equal. 
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Table 6 presents the results under 1, 100, 200, and 1000 draws with pseudo-

random, Halton, and shuffled Halton draws.4 Although the model specification is 

theoretically identified, the results with high numbers of draws indicate that the 

parameters are not empirically identified by the data. Nonetheless, optimizations from 

200 random or 100 Halton draws converge and generate estimates that appear identified. 

Without checking the robustness of the estimates to varying number of draws, the 

unidentification issue would not be apparent. For instance, under 200 random draws, the 

mean and standard deviation of the population distribution of tastes over video specialists 

are 19.391 (6.381) and 1.501 (0.446), and the coefficients are significant at the 1% level. 

Similarly, under 100 Halton draws, the mean and standard deviation of the random 

coefficient on video specialists are 19.576 (8.817) and 1.244 (0.507).  

The identification issue becomes readily apparent under 100 shuffled Halton 

draws; the optimization routine does not converge as parameter estimates explode. The 

results suggest that shuffled Halton draws expose the identification issue at a lower 

number of draws relative to other types of draws.  

 

5.2 Synthetic Data 

The above retail and synthetic datasets consist of relatively simple specifications. 

In this section, we present an example to illustrate how simulation difficulties become 

more apparent as additional complexities are introduced into the model. The example 

uses a dataset that consists of 2000 observations, each making a choice among 4 

alternatives. The utility function is given by: 

                                                 
4 The shuffling procedure is not valid when there is only 1 draw. See Hess and Polak (2003b) for the 
shuffled Halton procedure. 
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ninnini XU εβ +=                                                  (16) 

where Xni is a (1x8) vector containing 3 alternative specific constants and 5 explanatory 

variables. The explanatory variables are drawn from a multivariate normal distribution 

(means ranging from 1 to 3, variances approximately equal to 1, and covariances ranging 

from 0.0 to 0.6). The random coefficient nβ  is (8x1), and each parameter is independent 

and normally distributed, 2
k kN( , )β σ . This specification provides for alternative specific 

variances as well as taste heterogeneity with respect to the five explanatory variables. The 

variance for the fifth explanatory variable was set to 0.0, based on the conventional 

wisdom to fix at least one parameter in estimation. The true values of the parameters used 

for data generation are provided in Table 7, along with estimation results.  

The estimation results appear identified and statistically significant (particularly 

on the distribution for the random coefficients) for 250 draws, whether they are pseudo-

random, Halton, or shuffled Halton. The parameter estimates appear to be fairly stable at 

1000 draws, but the standard errors rise significantly, resulting in insignificant parameter 

estimates in all but the pseudo-random case and suggesting a problem. At 2000 shuffled 

Halton draws, the model does not converge as the parameters began to explode with 

successive iterations. The results also indicate that the pseudo-random case is heading in 

this direction (albeit more slowly) in that successive increases in draws result in 

increasing standard errors. The Halton results do not exhibit such a trend, and this may be 

due to either starting values (therefore resulting in different local maximum) or because 

of correlations among the Halton sequences for this 8 dimensional integral. 

 

6   Conclusion 
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 With advancements in computational speed, simulation techniques have vastly 

improved the ability to estimate complex models to answer a myriad of questions. 

However, the implementation of simulation can often mask problems of identification. A 

low number of draws can result in estimates that appear identified, but in fact are not 

identified either theoretically by the model or empirically by the data. 

To highlight the issue, we present examples of maximum simulated likelihood 

estimation of mixed logit models under actual and synthetic datasets. Although each of 

these models was unidentified, estimation with too few draws resulted in coefficients that 

appeared identified. The first was a telephone dataset that was theoretically unidentified, 

but the problem was masked at 5000 pseudo-random draws and 1000 Halton draws. The 

second was a model using a retail dataset of DVD store purchases, which was empirically 

unidentified, but the problem was masked at 200 pseudo-random draws and 100 Halton 

draws. The third was a model using a synthetic dataset that was empirically unidentified, 

but the problem was masked at 2000 pseudo-random draws, 2000 Halton draws, and 

1000 shuffled Halton draws. These estimation results also provide further evidence of the 

benefit of variance reduction methods such as shuffled Halton, which were shown to 

uncover identification issues at a lower number of draws.  

The important lesson is that it is critical not to stop at 200 draws, whether pseudo-

random, Halton, or shuffled Halton. No general rule of thumb exists for what constitutes 

a “high” or “low” number of draws as it depends on the data, specification and type of 

draw. One has to verify the stability of the parameter estimates as well as the standard 

errors as the number of draws increases. 
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In addition to the empirical results, the underlying source of these issues was 

investigated by examining the shape of the log-likelihood function under varying 

numbers of draws and different identifying conditions. We demonstrate that under one 

draw, the mixed logit model is equivalent to a standard logit model, and therefore the 

simulated log-likelihood is globally concave and always uniquely identified. Thus, for an 

unidentified model, the simulated log-likelihood is globally concave under one draw, and 

only a sufficient number of draws reveals the flatness of the likelihood function and 

results in either exploding parameter estimates or a singular Hessian.  

While we examined the case of mixed logit models under maximum simulated 

likelihood, the findings can be extended to other discrete choice models and simulation 

estimators. This applies, for example, to mixed logit under method of simulated moments 

as well as generalized extreme value models under maximum simulated likelihood. The 

number of draws affects the precision of the numerical integration and therefore the 

simulated log-likelihood. The obfuscation that leads to masked identification occurs for 

any situation in which the model is estimable under one draw regardless of whether the 

model is identified or not.  
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Table 1. The Demand for Telephone Service 

         
Draws:   2000 Random 5000 Random 1000 Halton 2000 Halton 
             

Parameter estimate 
std. 
error estimate 

std. 
error estimate 

std. 
error estimate 

std. 
error 

Alternative Specific constants -3.81 (0.66) -3.81 (0.66) -3.80 (0.67)   
   Budget Measured (1) -3.01 (0.61) -3.01 (0.61) -3.01 (0.61) singular 
   Standard Measured (2) -1.09 (0.30) -1.09 (0.30) -1.09 (0.30)   
   Local Flat (3) -1.19 (0.85) -1.19 (0.85) -1.19 (0.85)   
   Extended Flat (4) -3.25 (0.53) -3.26 (0.53) -3.25 (0.53)   
Log Cost            

σ1 0.81 (0.81) 3.07 (1.06) 2.65 (0.85)   
σ2 2.91 (0.94) 0.24 (1.20) 1.51 (0.69)     
(σ1

2+σ2
2)1/2 3.02   3.08   3.05     

Simulated Log-likelihood -472.73   -472.66   -473.02       
Number of observations 434  434  434  434  
Note: Uses robust standard errors. 
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Table 2. Empirical Unidentification with a Random Coefficient on a Nest Dummy 

  True 
1 

Random 
10 

Random 
35 

Random 
100  

Random 
1000 

Random 
1 

Halton 
10  

Halton 
35 

Halton 
100  

Halton 
  value          

σ 2.0 0.065 0.763 4.556 
no 

convergence
no 

convergence 0.168 21.456 
no 

convergence
no 

convergence
   (0.254) (0.848) (9.050)   (0.279) (101.142)   
            
Simulated Log-
likelihood  -80.44 -80.26 -78.58 - - -80.32 -78.73 

 
- - 

Number of 
observations  50 50 50 50 50 50 50 

 
50 50 

Notes: Standard error in parentheses. Uses non-robust standard errors. 
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Table 3. Empirical Identification with a Random Coefficient on a Nest Dummy 

  True 
1  

Random 
10 

Random 
100 

Random 
1000 

Random 
1  

Halton 
10  

Halton 
100  

Halton 
  value        
σ 2.0 0.003 0.152 1.770 2.378 0.004 2.112 2.464 
   (0.020) (0.064) (0.223) (0.319) (0.020) (0.274) (0.336) 
          
Simulated Log-
likelihood  -16094.37 -16092.56 -16071.31 -16052.96 -16094.36 -16059.71 -16049.65 
Number of 
observations  10000 10000 10000 10000 10000 10000 10000 

Notes: Standard error in parentheses. Uses non-robust standard errors. 
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Table 4.  Empirical Unidentification with Random Coefficients on Continuous Variables 

          

  
True 
value 

1 
Random

5 
Random

500 
Random 

σ1 1.0 0.002 0.698 5972.361 
    (0.017) (0.222) (67105.679) 
σ2 1.0 0.042 -0.305 2147.465 
    (0.066) (0.212) (24133.121) 
Simulated Log-
likelihood  -109.6 -94.1 -85.5 
Number of 
observations  100 100 100 

Notes: Standard error in parentheses. Uses robust standard errors. 
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Table 5. Empirical Identification with Random Coefficients on Continuous Variables 
            

  
True 
value 

1 
Random

25 
Random 

1000 
Random 

2000 
Random 

σ1 1.0 0.000 -0.496 0.909 0.920 
    (0.002) (0.020) (0.123) (0.127) 
σ2 1.0 -0.001 0.123 0.866 0.877 
    (0.007) (0.059) (0.178) (0.181) 
Simulated Log-
likelihood  -10986 -10083 -9917 -9911 
Number of 
observations  10000 10000 10000 10000 

Notes: Standard error in parentheses. Uses robust standard errors. 
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Table 6. Retail Stores 

Note: Uses non-robust standard errors. 
 

 
    1 Draw 100 Draws 200 Draws 1000 Draws 
    Parameter estimate std. error estimate std. error estimate std. error estimate std. error

Random mass: mean 1β  5.281 (0.656) 19.515 (7.510) 20.488 (6.386)   
           std. dev. σ1 0.032 (0.040) 0.419 (0.375) 0.038 (0.547)   

 video: mean 2β  4.672 (0.677) 18.530 (7.504) 19.391 (6.381)  no convergence 
           std. dev. σ2 0.004 (0.056) 1.209 (0.405) 1.501 (0.446)   

 electronics: mean 3β  2.077 (0.851) 16.026 (7.582) 17.262 (6.439)   
           std. dev. σ3 0.086 (0.133) 0.878 (0.930) 0.487 (1.636)   

 music: mean 4β  5.631 (0.671) 19.726 (7.516) 20.816 (6.391)   
           std. dev. σ4 0.069 (0.048) 1.317 (0.351) 0.967 (0.373)   

 online: mean 5β  0      -- 0      -- 0      --   
           std. dev. σ5 0.021 (0.140) 8.873 (3.406) 8.737 (2.818)   
  Simulated Log-likelihood  -5254.20   -5229.80   -5231.59       

Halton mass: mean 1β  5.282 (0.657) 20.559 (8.812)       
           std. dev. σ1 0.020 (0.040) 0.183 (0.934)       

 video: mean 2β  4.681 (0.678) 19.576 (8.817)  no convergence  no convergence 
           std. dev. σ2 0.095 (0.054) 1.244 (0.507)       

 electronics: mean 3β  2.084 (0.852) 17.437 (8.854)       
           std. dev. σ3 0.002 (0.182) 0.057 (6.371)       

 music: mean 4β  5.639 (0.673) 20.739 (8.827)       
           std. dev. σ4 0.023 (0.050) 1.358 (0.393)       

 online: mean 5β  0      -- 0      --       
           std. dev. σ5 0.042 (0.126) 9.442 (4.361)       
  Simulated Log-likelihood  -5253.91   -5236.63           
Shuffled 
Halton 

 
  -    no convergence  no convergence  no convergence 

Number of 
observations 

 
  3132   3132   3132   3132   
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Table 7. Synthetic Results 
True

Parameter value estimate std. error etimate std. error etimate std. error
Random ASC1_Mean 0.10 -0.032 (0.154) -0.244 (0.500) -0.559 (0.656)

         _StDev 1.00 0.067 (0.722) -1.133 (1.296) 1.944 (1.582)
ASC2_Mean 0.10 -0.094 (0.370) -0.581 (0.817) -0.080 (0.543)
         _StDev 1.00 -0.838 (1.051) 2.024 (1.594) -1.132 (1.880)
ASC3_Mean 0.20 0.066 (0.220) 0.029 (0.228) -0.350 (0.742)
         _StDev 1.00 0.428 (1.038) 0.320 (1.160) 1.996 (2.206)
Var1  _Mean 0.05 0.006 (0.043) 0.002 (0.051) 0.021 (0.068)
         _StDev 0.50 0.430 (0.120) ** 0.571 (0.198) ** 0.747 (0.438)
Var2  _Mean 0.05 0.118 (0.048) ** 0.140 (0.065) ** 0.154 (0.092)
         _StDev 0.50 0.382 (0.129) ** 0.411 (0.198) ** 0.424 (0.262)
Var3  _Mean 0.05 0.054 (0.047) 0.066 (0.071) 0.104 (0.090)
         _StDev 0.50 0.490 (0.103) ** 0.634 (0.249) ** 0.751 (0.384)
Var4  _Mean 0.10 0.020 (0.046) 0.009 (0.059) 0.032 (0.068)
         _StDev 0.50 0.338 (0.139) ** 0.494 (0.221) ** 0.474 (0.292)
Var5  _Mean 0.02 0.084 (0.045) * 0.119 (0.064) * 0.111 (0.080)
Sim. Log-likelihood -2726.07 -2725.08 -2724.91

Halton ASC1_Mean 0.10 -0.410 (0.654) -0.901 (1.544) -0.402 (0.665)
         _StDev 1.00 -1.442 (1.504) 3.210 (4.805) -1.414 (1.552)
ASC2_Mean 0.10 -0.097 (0.762) -0.540 (1.718) -0.094 (0.506)
         _StDev 1.00 0.927 (2.609) 2.892 (5.654) 0.897 (1.666)
ASC3_Mean 0.20 -0.003 (0.421) -0.881 (1.650) 0.055 (0.286)
         _StDev 1.00 -0.687 (2.021) 3.780 (5.558) 0.296 (2.605)
Var1  _Mean 0.05 0.004 (0.050) 0.045 (0.124) 0.003 (0.048)
         _StDev 0.50 0.546 (0.276) ** 1.222 (1.659) 0.532 (0.231)
Var2  _Mean 0.05 0.129 (0.079) * 0.240 (0.318) 0.124 (0.062)
         _StDev 0.50 0.374 (0.180) ** 0.630 (0.843) 0.378 (0.181)
Var3  _Mean 0.05 0.081 (0.071) 0.159 (0.236) 0.081 (0.072)
         _StDev 0.50 0.613 (0.310) ** 1.148 (1.489) 0.620 (0.305)
Var4  _Mean 0.10 0.023 (0.055) 0.046 (0.109) 0.020 (0.053)
         _StDev 0.50 -0.400 (0.294) -0.858 (1.341) 0.390 (0.231)
Var5  _Mean 0.02 0.101 (0.078) 0.181 (0.275) 0.097 (0.062)
Sim. Log-likelihood -2725.88 -2725.64 -2726.30

Shuffled ASC1_Mean 0.10 -0.746 (0.561) -0.814 (1.362)
Halton          _StDev 1.00 2.204 (1.066) ** 2.423 (3.090)

ASC2_Mean 0.10 -0.116 (0.402) -0.312 (0.667)
         _StDev 1.00 -1.061 (1.138) 1.674 (2.129)
ASC3_Mean 0.20 0.008 (0.269) -0.092 (0.617)
         _StDev 1.00 -0.778 (0.897) 1.163 (2.805)
Var1  _Mean 0.05 0.001 (0.054) 0.010 (0.065)
         _StDev 0.50 0.596 (0.202) ** 0.698 (0.556)
Var2  _Mean 0.05 0.140 (0.065) ** 0.150 (0.113)
         _StDev 0.50 0.380 (0.187) ** 0.435 (0.302)
Var3  _Mean 0.05 0.102 (0.069) 0.114 (0.129)
         _StDev 0.50 0.716 (0.216) ** 0.830 (0.696)
Var4  _Mean 0.10 0.024 (0.058) 0.022 (0.068)
         _StDev 0.50 -0.431 (0.194) ** 0.486 (0.403)
Var5  _Mean 0.02 0.105 (0.060) * 0.124 (0.101)
Sim. Log-likelihood -2725.07 -2726.13

Number of observations 2000 2000 2000

** Significant at 5% level of significance.
*  Significant at 10% level of significance.
Note: Uses robust standard errors.

250 Draws 1,000 Draws 2,000 Draws

no convergence
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Figure 1. Unidentified Model with Random Coefficient on a Nest Dummy (50 observations, 
Random Draws) 
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Figure 2. Unidentified Model with Random Coefficient on a Nest Dummy (50 observations, 
Halton Draws) 
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Figure 3. Identified Model with Random Coefficient on a Nest Dummy (10000 observations, 
Random Draws) 
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Figure 4. Identified Model with Random Coefficient on a Nest Dummy (10000 observations, 
Halton Draws) 
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Figure 5. Unidentified Model with Random Coefficient on Normally Distributed Variable (100 
observations, Random Draws) 
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Note: This figure plots the maximum of the Simulated Log-Likelihood over Sigma2 for a given value of Sigma1. 
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Figure 6. Identified Model with Random Coefficient on Normally Distributed Variable (10000 
observations, Random Draws) 
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Note: This figure plots the maximum of the Simulated Log-Likelihood over Sigma2 for a given value of Sigma1. 
 
 
 


