Calculus I (Math 110, Math 114) Topics List ${ }^{1}$
 (*) means that this topic should be included in Math 114.
 ${ }^{(* *)}$ means that this is an optional topic in either Math 110 or Math 114.

0. Functions of Pre-calculus (**)

(These topics are pre-requisite, therefore optional, but can be reviewed)
(a) Cartesian coordinate systems
(b) Real-valued functions: domain, co-domain, range.
(c) One-to-one functions.(**)
(d) Algebra and transformation of functions. Composition, inverse functions.
(e) Linear functions, quadratic functions, powers, polynomials, rational functions, exponential functions, hyperbolic functions, logarithmic functions, piecewise functions, absolute value function, step functions.
(f) Graphing of all the familiar functions above.
(g) Properties of functions: Even, odd, increasing/decreasing, roots.
(h) Exponential and logarithmic properties and identities.
(i) Trigonometric functions, their properties, and their identities.
(j) Conic sections; parabola, hyperbola, ellipse.
(k) Inequalities, graphing their regions.
(I) Parametrized curves: $r(t)=(x(t), y(t))$.
(m) The polar coordinate system, polar curves.

1. Limits and Continuity

(a) Intuitive definition of a limit at a point with graphs and tables.
(b) Right-hand and left-hand limits at a point.
(c) Epsilon-delta definition of the limit. (*)
(d) Limit laws.
(e) The Squeeze Theorem.
(f) Limits of polynomials, rational functions, and algebraic functions with analytic techniques dealing with $0 / 0$.
(g) Trigonometric limits: $\sin (x) / x, \sin (x) / x^{\wedge} 2,(1-\cos (x)) / x$, etc.

[^0](h) Infinite limits and limits at infinity; Vertical and horizontal asymptotes, removable singularities.
(i) Definition of continuity at a point.
(j) Permanence of continuity; linear combinations, products, quotients, composition.
(k) Continuity on a domain.
(I) Left and right continuity; continuity on a closed and bounded interval.
(m) The Intermediate Value Theorem with examples.

2. The Derivative

(a) The geometric intuition of a tangent line.
(b) Differentiability at a point.
(c) Differentiability on an interval.
(d) Finding the equation of a tangent line to a graph at a point.
(e) Parametric equations and their derivatives.
(f) Implicitly defined curves and Implicit Differentiation.
(g) Rules of differentiation; linear rule, power rule (proof*), product rule (proof*), quotient rule, chain rule.
(h) Higher order derivatives.
(i) The Inverse Function Theorem; (**)
(j) Relation between derivatives of inverse function pairs.
(k) Derivatives of exponential, logarithm, inverse trig functions.
(I) Derivatives of hyperbolic functions. (*)
(m) Logarithmic differentiation.
(n) Rolle's Theorem and The Mean Value Theorem with examples. (*)
(o) Relative and absolute extrema. Fermat's theorem, critical numbers. First and second derivative tests. Concavity. Inflection points.
(p) The Extreme Value Theorem with examples.

3. Applications of Differentiation

(a) Indeterminate forms (l'Hopital's rule).
(b) Limit definition of $\mathrm{e}^{\wedge} \mathrm{a}$. (**)
(c) Curve sketching.
(d) Optimization.
(e) Related rates.
(f) Linear approximations.
(g) Differentials. (**)
(h) Exponential growth and decay.
(i) Approximation by Taylor polynomials. (*)
(j) Elasticity. (**)
(k) Newton's method. (*)
(I) Velocity, acceleration, kinematics.
(m) Partial derivatives. (**)
(n) Verifying that a function satisfies a differential equation. (*)
(o) Use of Technology.

4. Riemann Sums \& Integration

(a) Antiderivatives.
(b) Riemann Sums, left, right, midpoint, tagged.
(c) Geometric interpretation; areas under graphs.
(d) The "Calculus" definition of the (definite) Riemann integral
(e) Properties of the definite integral, comparative inequalities.
(f) The Fundamental Theorem of Calculus
(g) Computing definite integrals. (**)

[^0]: ${ }^{1}$ This list was approved by the department on 10/25/22.

