The leaf heat tolerance of epiphytic bromeliads

By Joseph Shiina

https://en.wikipedia.org/wiki/G uzmania_lingulata

Guzmania lingulata https://commons.wikimedia.or g/wiki/File:Guzmania_monosta chia_var._alba.jpg

Guzmania monostachia https://www.flickr.com/photos/fuizfilipevarella/4564338438/

Aechmea nudicaulis

Overview

- 1. Research Question (3)
- 2. Background (4-6)
- 3. Hypothesis (7)
- 4. Materials and Methods (8-9)
- 5. Expected Results (10-11)
- 6. References (12)

Research Question

Does the heat tolerance of bromeliads differ in association with their photosynthetic pathway (C3, CAM, or CAM-C3) and distributions within the canopy?

How will plants respond to the projected rising temperatures?

Background: Bromeliads

- > Epiphytes
 - \circ $\,$ Where on trees? Depends.
 - $\circ~$ Water shortage, light/shade,

temperature

- Various leaf functions
- > Tank or atmospheric
 - Tank: a house for many species

Background: Tropical Rainforest Biome

- ~46% of world's living terrestrial carbon pool (Soepadmo, 1993)
- ➤ Relatively stable climate...
 - Species vulnerable to sudden changes (Tewksbury et al., 2008)

https://en.wikipedia.org/wiki/Tropical rainforest#/media/File:Koppen-Geiger Map Af present.svg

Background: heat tolerance

Water loss

Oxidative stress

Inhibition of seed germination

Alteration in photosynthesis

Reduction of crop quality

Heat stress

Yield reduction

Alteration in phenology

Alteration in dry matter partitioning

(Hasanuzzaman et al., 2013)

Guzmania lingulata

Guzmania monostachia

Shade tolerance Lower canopy C₃ Sun group Higher canopy C₃-CAM Aechmea nudicaulis

Sun group Higher canopy CAM (individual species)
 Higher canopy = higher
 tolerance

2. (across 3 species) CAM = higher tolerance

> C_3 -CAM = additional step needed

Materials and Methods: Photosynthetic efficiency

- > An indicator for plant stress
- > With heat stress, efficiency deteriorates
 - heat tolerant samples less affected by heat
- stress = decline in carbon fixation = excess light (unused for photosynthesis)

Materials and Methods: Chlorophyll Fluorescence

Nonproductive pathways

 Light
 Reemission as heat

 Fluorescence (High = less used for photosynthesis, inefficient)

 Transfer to oxygen

 Reactive Oxygen Species (ROS)

- ➢ Measured via chlorophyll fluorometer
- ➤ Measuring parameter: Fv/Fm
 - Ratio showing maximum potential photosynthetic efficiency
 - Lower under stress

Expected results: Within Species

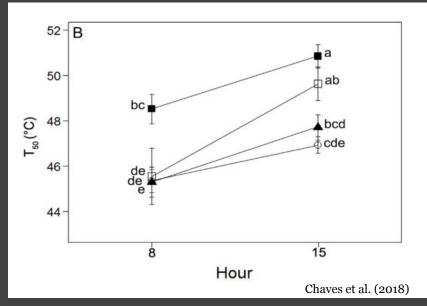
Chaves et al. (2018):

- D₅₀: Critical time when 50% of initial Fv/Fm reduced
- "detected a significantly higher thermal tolerance in shaded A. nudicaulis than in sun-exposed plants"
- More constant conditions along days and years of shade environments seems to increase and stabilize (i.e. reduce the plasticity) their thermotolerance

Table 1

Means and standard errors of projected D_{50} values of all experimental groups at 15:00 in the rainy season. Same letters represent values statistically equal among all groups.

Species	Environment	Leaf region	D ₅₀ (min.)
A. nudicaulis	Sun-exposed	Тор	80.86±11.8 ^b
		Basal	103.17 ± 5.3 ^b
	Shaded	Тор	157.87 ± 17.4 ^a
		Basal	163.66 ± 28.1 a
V. minarum	Sun-exposed	Тор	73.19 ± 4.8 ^b
	· · · · · · · · · · · · · · · · · · ·	Basal	81.56 ± 2.3 ^b
V. bituminosa	Shaded	Тор	70.59 ± 1.8 ^b
		Basal	$73.02\pm0.9\ ^{b}$
		С	haves et al. (201


Expected results: Across Species

Chaves et al. (2018):

- Vriesea minarum more heat sensitive than Vriesea bituminosa and Aechmea nudicaulis (widely distributed)
- Species with narrow distribution patterns: heat sensitivity *not* high, but heat tolerance plasticities *very low*

Weng and Lai (2005), Yamada et al. (1996), Chaves et al. (2018):

- CAM bromeliad *Ananas comosus* showed greater heat tolerance than some C3 and C4 species
- C3 and C4 species have relatively high heat sensitivity compared to CAM

T50 variations of sun-exposed (open squares) and shaded (closed squares) *A. nudicaulis*, *V. minarum* (open circles) and *V. bituminosa* (closed triangles)

References

- Chaves, Cleber & Simões Santos Leal, Bárbara & Lemos-Filho, José. (2015). Temperature modulation of thermal tolerance of a CAM-tank bromeliad and the relationship with acid accumulation in different leaf regions. Physiologia Plantarum. 154. 500-510. 10.1111/ppl.12295.
- Chaves, Cleber & Simões Santos Leal, Bárbara & Lemos-Filho, José. (2018). How are endemic and widely distributed bromeliads responding to warming temperatures? A case study in a Brazilian hotspot, Flora. 238. 110-118. 0367-2530. https://doi.org/10.1016/j.flora.2017.05.003.
- Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International journal of molecular sciences, 14(5), 9643–9684. <u>https://doi.org/10.3390/ijms14059643</u>

Soepadmo, Engkik. (1993). Tropical rain forests as carbon sinks. Chemosphere. 27. 1025–1039. 10.1016/0045-6535(93)90066-E.

Tewksbury, Joshua & Huey, Raymond & Deutsch, Curtis. (2008). ECOLOGY: Putting the Heat on Tropical Animals. Science (New York, N.Y.). 320. 1296-7. 10.1126/science.1159328.

Weng, J., Lai, M. (2005). Estimating heat tolerance among plant species by two chlorophyll fluorescence parameters. Photosynthetica 43, 439-444.

Yamada, M., Hidaka, T., Fukamachi, H. (1996). Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Sci. Hortic. (Amsterdam) 67, 39–48.